Microbial Intelligence

Microbial intelligence (popularly known as bacterial intelligence) is the intelligence shown by microorganisms. The concept encompasses complex adaptive behaviour shown by single cells, and altruistic or cooperative behavior in populations of like or unlike cells mediated by chemical signalling that induces physiological or behavioral changes in cells and influences colony structures.

Complex cells, like protozoaor algae, show remarkable abilities to organise themselves in changing circumstances.[1]

Shell-building by amoebae reveals complex discrimination and manipulative skills that are ordinarily thought to occur only in multicellular organisms.

Even bacteria, which show primitive behavior as isolated cells, can display more sophisticated behavior as a population. These behaviors occur in single species populations, or mixed species populations. Examples are colonies of myxobacteria, quorum sensing, and biofilms.

It has been suggested that a bacterial colony loosely mimics a biological neural network. The bacteria can take inputs in form of chemical signals, process them and then produce output chemicals to signal other bacteria in the colony.

The mechanisms that enable single celled organisms to coordinate in populations presumably carried over in those lines that evolved multicellularity, and were co-opted as mechanisms to coordinate multicellular organisms.

Bacteria communication and self-organization in the context of network theory has been investigated by Eshel Ben-Jacobresearch group at Tel Aviv Universitywhich developed a fractalmodel of bacterial colony and identified linguistic and social patterns in colony lifecycle.[2]

The formation of biofilmsrequires joint decision by the whole colony.

Biofilmof Bacillus subtiliscan use electric signals (ion transmission) to synchronize growth so that the innermost cells of the biofilm do not starve.[3]

Under nutritional stress bacterial colonies can organise themselves in such a way so as to maximise nutrient availability.

Bacteria reorganise themselves under antibioticstress.

Bacteria can swap genes (such as genes coding antibiotic resistance) between members of mixed species colonies.

Individual cells of myxobacteriaand cellular slime mouldscoordinate to produce complex structures or move as multicellular entities.

Populations of bacteria use quorum sensingto judge their own densities and change their behaviors accordingly. This occurs in the formation of biofilms, infectious disease processes, and the light organs of bobtail squid.

For any bacterium to enter a host’s cell, the cell must display receptors to which bacteria can adhere and be able to enter the cell. Some strains of E. coliare able to internalize themselves into a host’s cell even without the presence of specific receptors as they bring their own receptor to which they then attach and enter the cell.

Under rough circumstances, some bacteria transform into endosporesto resist heat and dehydration.

A huge array of microorganisms have the ability to overcome being recognized by the immune system as they change their surface antigens so that any defense mechanisms directed against previously present antigens are now useless with the newly expressed ones.

Bacterial colony optimisationis an algorithmused in evolutionary computing. The algorithm is based on a lifecycle model that simulates some typical behaviors of E. colibacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration.[4]

 Text under construction

  1. ^Ford, Brian J. (2004). “Are Cells Ingenious?”(PDF). Microscope. 52(3/4): 135–144.
  2. ^Cohen, Inon; et al. (1999). “Continuous and discrete models of cooperation in complex bacterial colonies”(PDF). Fractals. 7.03 (1999):: 235–247.
  3. ^Beagle, Sarah D.; Lockless, Steve W. (5 November 2015). “Microbiology: Electrical signalling goes bacterial”. Nature(527): 44–45. doi:10.1038/nature15641. Retrieved 13 June2017.
  4. ^Niu, Ben (2012). “Bacterial colony optimization”. Discrete Dynamics in Nature and Society. 2012(Article ID 698057).
error: Content is protected !!